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Abstract—Subtrajectory clustering is vital for real-world appli-
cations such as traffic bottleneck detection, public transportation
optimization, and play pattern discovery in sports analytics. This
problem is NP-hard and computationally intensive for large-
scale applications, and many existing classical implementations
struggle with scalability and generalizability. While machine
learning-based approaches allow for greater generalizability than
existing rule-based methods, they still struggle with scalability.
Quantum computing has shown promising performance improve-
ments over classical computing for some machine learning tasks
on regular point data. However, no research has been done
on whether quantum computing can also offer improvements
over classical computing for subtrajectory clustering. If that is
the case, combining quantum computing with machine learning
may enable solutions that are both scalable and generalizable.
This paper discusses the drawbacks of current subtrajectory
clustering approaches within the classical computing paradigm,
the challenges associated with solving the problem using quantum
computing, and a vision for the conversion of a state-of-the-art
classical subtrajectory clustering algorithm to quantum.

Index Terms—Quantum Computing, Subtrajectory Clustering,
Quantum Machine Learning

I. INTRODUCTION

With the pervasive use of GPS-enabled devices and
location-based services, an unprecedented volume of trajectory
data is being continuously generated. Trajectories are time-
ordered sequences of spatial points that can be collected
using location sensors. The unique challenges associated with
mining this type of data require different solutions from those
used for point data. A key task in trajectory analytics is
trajectory clustering, where similar trajectories are grouped
together. This task has numerous real-world applications, such
as traffic monitoring, urban planning, and sports analytics [1]–
[3]. Subtrajectory clustering is a technique that segments
trajectories into smaller, meaningful subtrajectories and groups
similar ones together. Unlike full-trajectory clustering, this
technique enables the discovery of local patterns that may
be obscured due to variations in trajectory length, duration,
or sampling rate. Subtrajectory clustering has many applica-
tions, such as carpooling, reconstructing maps from raw data,
understanding animal migration patterns, etc. [4], [5]

Despite its importance, subtrajectory clustering is compu-
tationally intensive, being NP-hard [6]. Many classical algo-
rithms such as TRACLUS [5] rely on rule-based heuristic

methods that can be sensitive to input parameters that are
computationally intensive to calibrate [7], [8] and scale poorly
with dataset size [9]. RLSTC [10] has proposed reinforcement
learning (RL) approaches to address these limitations. It uses a
Deep Q-Network (DQN) to learn policies that identify optimal
segmentation points. This approach is more scalable and gen-
eralizable than rule-based methods, as it learns directly from
the dataset; however, the calculation of trajectory distances is
a bottleneck.

One potential strategy to address this issue of scalability
of subtrajectory clustering is to use quantum computing,
a paradigm that has been gaining attention from research
centers, funding agencies, and companies [11]. This increasing
attention is partly evidenced by the popularity of IBM’s Qiskit
language and the development of Microsoft’s Majorana 1
chip [12], [13]. Previous research has shown that quantum
computing can offer promising improvements in the execution
time of machine learning algorithms for regular point data
for classical computers [14]–[17]. However, no research has
been done to investigate if such improvements also exist for
machine learning algorithms for trajectory data. In this paper,
our aim is to present a framework that could be implemented
to answer this question.

This paper presents our progress towards adapting RL-
STC, a state-of-the-art classical subtrajectory clustering algo-
rithm [10] shown to outperform other state-of-the-art methods,
to a quantum algorithm named Q-RLSTC (Quantum Re-
inforcement Learning-based Sub-Trajectory Clustering). Our
aim is to present a framework to study whether quantum
computing can deliver performance improvements over clas-
sical computing in the context of subtrajectory clustering.
The remainder of this paper is organized as follows. Section
II presents related work; Section III discusses the research
challenges of quantum subtrajectory clustering; Section IV
explains our proposed quantum subtrajectory clustering al-
gorithm; finally, Section V provides conclusions and future
research.

II. RELATED WORK

A. Classical Subtrajectory Clustering

Multiple classical computing algorithms for subtrajectory
clustering exist [5], [6], [10], [18]–[21], aiming to uncover



local movement patterns by segmenting trajectories into sub-
trajectories, using hand-crafted heuristics, and grouping those
exhibiting similar spatial-temporal behavior. The effectiveness
of these methods depends on the initial parameters chosen,
which can be computationally expensive to calibrate [7], [8].
Furthermore, similarity metrics such as Fréchet distance [22]
and Dynamic Time Warping [23] also scale poorly with
trajectory length and dataset size. To address these issues,
RLSTC [10] was recently introduced as a DRL approach
to learn segmentation policies directly from data using a
DQN for subtrajectory clustering. RLSTC circumvents the
need for static rules and provides a dynamic way to identify
subtrajectory boundaries [10]. However, this approach remains
computationally intensive on classical hardware due to the
nature of DRL, which requires exploring a large policy space.

B. Quantum Computing Background

Quantum computing stems from the principles of quantum
mechanics, describing phenomena at atomic and subatomic
scales. Quantum mechanics introduces concepts like superpo-
sition (a particle existing in multiple states simultaneously) and
entanglement (linked quantum states of particles) that can be
exploited for computing [24]. Classical computing uses bits (0
or 1). A quantum bit (qubit), used in quantum computing, can
be in state 0, state 1, or a superposition of both states. When
measured, it yields either 0 or 1, with the probability of each
outcome determined by the qubit’s state prior to measurement.
This allows quantum computers to process vast information
via parallelism. A common approach in quantum computing
for solving a problem is to construct quantum circuits using
quantum gates, which are basic operations that manipulate
qubits by changing their quantum states. Qubits are susceptible
to environmental noise from temperature fluctuations and
electromagnetic fields, which can detrimentally affect desired
superposition states [25]. Quantum systems can also undergo
decoherence, which is the degradation of superposition and
entanglement as quantum information is lost [26].

III. RESEARCH CHALLENGES IN QUANTUM
SUBTRAJECTORY CLUSTERING

A. Challenges Common to Both Classical and Quantum Com-
puting

(1) Data Volume: Large-scale data collection from loca-
tion sensors, particularly at high sampling rates, can pro-
duce massive datasets [27]. This imposes burdens on storage
and processing systems, especially when real-time analysis
is required. This can be problematic for current quantum
hardware which have limited qubits to encode the data with.
(2) Spatial-Temporal Context: While point data is unordered,
trajectory data requires a set ordering which puts restrictions
on the ways the data can be organized and compressed. This
is notable in quantum computing where it may be difficult
to encode all of the spatial-temporal elements into qubits
efficiently. (3) Size Variability: Unlike point data where each
point can be compared easily to another, with trajectories there
is a need to compare objects of different sizes. This issue

is compounded in the quantum paradigm where objects are
often converted into fixed-length vectors. (4) Noise and Data
Cleaning: The instruments for obtaining trajectory data, such
as GPS, may give inaccurate readings that can adversely affect
the quality of the final clustering. This noise in the data can be
compounded by the noise inherent to current quantum systems.
(5) Streaming Data: Many applications require processing
trajectories arriving as continuous streams. A limited number
of qubits may exacerbate this issue, and adding more qubits
to the system to encode more data may prove difficult.

B. Challenges Specific to Quantum Computing

(1) Data Loading and Encoding: Classical trajectory data,
stored as bit strings, must be efficiently encoded into quantum
states while minimizing the number of qubits and circuit
depth [28]. Choosing an appropriate encoding technique that
preserves spatial and temporal relationships is vital. Angle
encoding [29], for example, maps data values to rotation angles
of qubits, allowing for a direct, intuitive representation of con-
tinuous features like coordinates and timestamps. This is vital
for trajectory clustering because maintaining the relative order
and magnitudes of spatial and temporal differences between
points is crucial for accurate similarity calculations between
subtrajectories. Without an encoding method that respects this
inherent order and structure, the quantum algorithm would
lose the very information it needs to distinguish and cluster
distinct movement patterns. (2) Optimal Circuit Design: The
design of effective, trainable, and hardware-efficient quantum
circuits is a formidable challenge. Selecting a circuit depth
that does not match the problem may result in slow training
known as a barren plateau [30]. If the circuit is too deep, it
may accumulate decoherence as mentioned in Section II.B and
become untrainable due to noise. There is an inherent trade-off
between a quantum circuit’s ability to represent the complex
states required for a given computation and its efficiency which
necessitates intimate domain knowledge for optimal circuit
design. (3) Hybrid Algorithm Design: Due to limitations in
the number of qubits and in the decoherence time available
in quantum computers today, it is often advisable to adapt
only those components of an algorithm that see the greatest
improvements from a quantum adaptation, leaving the other
elements as classical. Determining the optimal division of
labor between classical and quantum processors is a key design
choice. Efficiently managing the communication overhead in
terms of the frequency of exchanges, the volume of data
transferred per exchange, and the speed of data transfer and
encoding/decoding between classical and quantum compo-
nents is vital to ensure that any potential quantum speedup is
not nullified by classical bottlenecks. (4) Quantum Hardware
Restraints: Noisy Intermediate-Scale Quantum (NISQ) [31]
devices are the most accessible and cost-effective pieces of
quantum hardware available today for research. They are
characterized by a limited number of qubits, short coherence
times in which each qubit can maintain its quantum properties
like superposition and entanglement, high gate error rates
which are the probability that an error occurs while a quantum



gate is applied to a qubit, and restricted qubit connectivity
which means that not all qubits can directly interact with each
other. These hardware limitations severely constrain the size
and complexity of quantum algorithms that can be reliably
executed, making the practical implementation of ambitious
Quantum Machine Learning (QML) models for subtrajectory
clustering a long-term goal. (5) Decoding Quantum Outputs:
Quantum algorithms typically yield probabilistic outcomes
through measurements. Translating these measurement back
into classical information (e.g., cluster assignments, Q-values,
distances) that can be used by the classical components of
the hybrid algorithm requires robust decoding strategies such
as expectation-value estimation [32]. This is particularly chal-
lenging with large or noisy quantum output spaces, as it can
be with subtrajectory clustering due to its high dimensionality.

IV. PROPOSED QUANTUM SUBTRAJECTORY CLUSTERING
ALGORITHM

We describe RLSTC [10], a state-of-the-art subtrajectory
clustering algorithm for classical computers, shown to out-
perform other state-of-the-art methods, and our approach for
adapting it to quantum computing (Quantum RLSTC).

A. Description of RLSTC

RLSTC clusters subtrajectories with the following steps:
(1) Preprocessing: Trajectories are simplified by keeping

only significant points with Minimum Description Length
(MDL).

(2) Computation of Initial Cluster Centers: Cluster
centers are initially derived using k-means++ [33]. A cluster
center is a representative trajectory capturing the collective
movement pattern of sub-trajectories within that cluster, gen-
erated by calculating the average coordinate at that timestamp.
If the number of trajectories within a specific timestamp meets
a threshold MinNum, the average coordinate for that times-
tamp is computed, using linear interpolation for trajectories
not having a point at that timestamp.

(3) Learning the Optimal Policy: The reinforcement
learning model is formulated as a Markov Decision Process
(MDP). States: Each state consists of five features: st(ODs),
the overall distance between all points in a subtrajectory and
the nearest cluster center to that subtrajectory if the trajectory
is segmented at the current point pt; st(ODn), the overall
distance if a trajectory isn’t segmented at the current point pt;
ODb, the expert knowledge estimate of the overall distance
calculated by TRACLUS, used to make sure the RLSTC algo-
rithm doesn’t make a premature partition that fails to minimize
overall distance; st(Lb) the relative length of the generated
subtrajectory; and st(Lf ), the relative length of the remaining
subtrajectory. Actions: Whether or not to segment the trajec-
tory at the current point pt. Rewards: st(OD)−st+1(OD) for
the immediate reward, and s1(OD)−s|T |(OD) for the cumu-
lative reward, where both represent the difference in overall
distance between states. Initialization: The DQN algorithm
[34] initializes a main Q-network which takes as input a pair
(st, at) and returns Q(st, at; θ), and a target network, along

with a replay memory M storing all the experience vectors
(st, at, rt, st+1). The goal of the DQN is to learn a function
Q and construct a policy for selecting an action at given
a state st. Training is episodic. For each trajectory, points
are processed sequentially. (3.1) Distance Calculation: The
Overall Distance (OD) measures are based on the Euclidean
distance using the Trapezoid approximation [35], which is
identified as a bottleneck in the paper. (3.2) Action Selection:
At each point, an action is chosen using an ϵ-greedy strategy
based on the main network [36]. The action is executed,
leading to a new state st+1 and reward rt. This experience
(st, at, rt, st+1) is stored in the replay memory M . (3.3) Loss
Function: A minibatch of experiences is randomly sampled
from M to train the main network by minimizing the Mean
Squared Error (MSE) loss function using Stochastic Gradient
Descent (SGD). The target Q-value for the loss calculation is
derived from the target network and the immediate reward.
The target network’s parameters are periodically updated. The
learned optimal policy is to select the action that maximizes
Q(st, at; θ) for a given state st because Q is the expected
long-term reward starting from state st after taking action at.

(4) Classical Segmentation and Clustering Loop: Use
the cluster centers from Step 2 and rerun segmentation using
the learned policy. Update the cluster centers by assigning
each newly generated subtrajectory to its nearest cluster.
The maximum distance maxdist between the newly updated
cluster centers and the previous cluster centers is calculated; if
maxdist is below a threshold τ , the algorithm converges and
the k clusters are returned, which represent the most common
shared subtrajectories.

B. Quantum RLSTC (Q-RLSTC): Our Vision to Transform
RLSTC to a Quantum Approach

Utilizing a hybrid quantum-classical approach, we present
quantum alternatives to existing sub-algorithms of RLSTC,
with comments on both their near-term feasibility and utility
over classical methods. Figure 1 illustrates our proposed
algorithm, the steps of which are discussed below.

(1) Preprocessing with MDL: Given NISQ hardware lim-
itations, the classical MDL preprocessing step is retained for
our framework. We will then use angle encoding to represent
the trajectories with qubits for Step 2.

(2) Quantum Initial Clustering: RLSTC utilizes k-
means++ [33] for the initialization of clusters. There have
been multiple quantum implementations of the k-means algo-
rithm [17], [37]–[40], so it seems like the most promising area
to hybridize this algorithm. In particular, q-means [39] was
found to scale polylogarithmically with the number of data
points, suggesting an exponential speedup with respect to the
size of the dataset, whereas the simplest version of the classical
k-means scales is linear. This is important with trajectory
data which often has many data points. Our vision uses q-
means++ [39], which replicates the superior initial clustering
of k-means++ in a quantum environment.

In addition to k-means [41] and k-means++ [33], RLSTC
can work with other density clustering algorithms, such as



Fig. 1. Our vision for Q-RLSTC. Boxes with blue borders are classical and boxes with red borders are quantum.

DBSCAN [42], BIRCH [43], and OPTICS [44]. Notably,
quantum and quantum-inspired DBSCAN versions have also
been developed [45]–[47]. While this would require further
alteration of the RLSTC framework, a DBSCAN-inspired
algorithm may be a better fit for trajectory clustering than k-
means or k-means++, as it can find arbitrarily-shaped clusters
based on density rather than finding a set number of clusters
[48], but the necessary alterations would be substantial due to
the move away from centroid-based updates.

(3) Quantum Policy Learning: RLSTC uses a DQN with
an ϵ-greedy strategy to learn a policy. There is a growing
corpus of research dedicated to studying the use of Variational
Quantum Circuits (VQCs) to accomplish this objective [49]–
[52]. Lokes et al. [50] mention the O(n) linear complexity
where n is the number of parameters needed in a Variational
Quantum Deep Q-Network (VQ-DQN) compared to the O(n3)
parameter complexity of classical Q-Learning and O(n2)
complexity of a classical DQN. It is also notable that Chen et
al.’s algorithm [49] is quite robust against the noise present
in current-day NISQ devices because their action selection
mechanism does not need to find the exact expectation value
of each qubit, but rather only identifying the qubit with the
largest expectation value. Due to the probabilistic nature of
quantum measurements, it would require a large number of
measurements, or shots, to converge on an exact expecta-
tion value. These results are promising for more near-term
improvements as noise will continue to be a major obstacle
in quantum computing in the near future. (3.1) Quantum
Overall Distance Calculation: [35] mentions the continued
calculation of distances as a bottleneck in RLSTC. When a
point is scanned, the distance is computed between the cluster
center and the current sub-trajectory [10]. Multiple quantum
approaches are available for distance calculation [53]–[55],
including the swap test [56], which estimates how much two
quantum states differ. It scales linearly with the number of
qubits whereas the classical method scales exponentially [57].
(3.2) Quantum Action Selection: The ϵ-greedy strategy can
be replaced with Grover’s algorithm [58]. Instead of random
exploration, Grover’s algorithm probabilistically selects an
action that is beneficial by increasing the amplitude of the
desired items in the superposition of all items. With N being
the database size, the worst-case time complexity of Grover’s
algorithm is O(

√
N ), improving over unstructured classic

search’s O(N) complexity [59].
Another approach for action selection is Variable-Time

Amplitude Amplification (VTAA), which extends Grover’s
algorithm. The algorithm given by Wang et al. cites a quadratic

speedup compared to the best possible classical results [60].
The multi-armed bandit problem [36] that the algorithm is
based on has enough differences from the ϵ-greedy strategy
that it may require additional changes to make it feasible.
However, because there are only two possible actions per state,
it may still be a good fit. (3.3) Loss Function: Q-RLSTC can
use quantum gradient descent (QGD) [61] instead of SGD to
calculate the loss. QGD has a complexity of O(1) compared
with SGD’s O(N), with N the number of parameters. We can
decode the optimal policy back to classical.

(4) Classical Segmentation and (5) Clustering: RLSTC
uses a classical segmentation and clustering loop because of
the limited number of qubits on NISQ hardware.

V. CONCLUSIONS AND FUTURE RESEARCH

Subtrajectory clustering is a core challenge in spatial data
mining, limited by the scalability of classical methods like
RLSTC. This paper introduced our work in progress regarding
Q-RLSTC, a hybrid quantum-classical framework designed to
study whether it is possible to leverage quantum computing to
overcome these limitations by selectively integrating quantum
algorithms for distance estimation, policy learning, and clus-
tering while retaining classical components where quantum
advantages are expected to be marginal or cost-prohibitive on
current NISQ devices. We also identified and discussed the
research challenges of quantum trajectory clustering. For fu-
ture work, we intend to formalize and implement the proposed
quantum algorithm using an open-source quantum software
development framework such as IBM’s Qiskit [12]. We will
then compare its performance against that of its classical
counterpart.
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tical Quantum K-Means Clustering: Performance Analysis and Applica-
tions in Energy Grid Classification,” IEEE Trans. Quantum Eng., 2022.

[17] A. Poggiali, A. Berti, A. Bernasconi, G. M. Del Corso, and R. Guidotti,
“Quantum clustering with k-Means: A hybrid approach,” Theor. Comp.
Sci., vol. 992, 2024.

[18] N. Pelekis, P. Tampakis, M. Vodas, C. Panagiotakis, and Y. Theodoridis,
“In-DBMS Sampling-based Sub-trajectory Clustering,” EDBT, 2017.

[19] Y. Xia and L. Zhou, “Improved clustering algorithm based on hyper-
cube,” MLCR, 2022.

[20] D. Qiao, X. Yang, Y. Liang, and X. Hao, “Rapid trajectory clustering
based on neighbor spatial analysis,” Patt. Recog. Letters, vol. 156, 2022.

[21] S. Dutta, A. Das, and B. K. Patra, “CLUSTMOSA: Clustering for GPS
trajectory data based on multi-objective simulated annealing to develop
mobility application,” Applied Soft Computing, vol. 130, 2022.

[22] J. Gudmundsson, M. Horton, J. Pfeifer, and M. P. Seybold, “A Practical
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